

EPE'20 ECCE Europe Keynote 1

Roadmap to DC: "From DC building to a DC distribution"

Prof. Dr. Ir. P.Bauer

TU Delft, The Netherlands

Tuesday 08 September 2020

Roadmap to DC

"From DC building to a DC distribution"

prof.dr.ir. P.Bauer DC Systems, Energy Conversion & Storage

ŤUDelft

ŤUDelft

Smart grid – chance for revival of DC

- Uncertainty
- Grid Innovation
- Regulation and Policy
- Climate change
- Geo-political issues
- Public support

Impetus?

& Electric

Vehicles

infrastructure

Aging

Renewables &

- license to operate
- customer preference

How?

- Redesign the system for (partially) DC
- Integrate storage
- System of Systems approach (social, ecological & technological)
- Interface, interaction, integration

Where we want to be?

- Sustainable, reliable high efficient, low cost distribution grid
- Grid (DC) with Renewable energy, Electric Vehicles
- Demand follows production
- Towards flexibility and modularity
- De-centralized control
- New distribution of costs & market structures
- System integration (gas&elec.)

Status now?

Delft

AC grid Control, stability, production follows demand

Why DC distribution ?

- All Renewable Energy and Storage essentially DC
- Higher system efficiency
- Lower overall investment costs
 Higher System controllability (stability, resonances)
- Potential for long distance transmission
- Higher reliability
- Greater power per conductor
- Higher voltages possible

Radial DC grids

- Connecting DC microgrids
- Refurbishing the system for (partially) DC infra
- Modular converters with integrated protection
- Integrated control market approach
- Integrating cells/microgrids
- Interface, interact, integrate

Meshed DC distribution grids

- Sustainable, reliable, high efficient, low cost DC distribution grid with renewable energy, and electric vehicles
- Fexibility and modularity
- Decentralized control
- New distribution of costs, market and usage structures
- Integration of multiple energy carriers (gas&elec.)

DC Nanogrids

- Radial DC feeders
- (lighting,trolley)
- Devices, protection,
- stability

Delft

local use (storage, EVs) Cellular concept

- DC Nanogrids V2.0
- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery
- Enable demand

response

- Cellular concept
 - Sizing (optimization)
 - Protection, grounding

DC microgrids / DC links

Towards local generation

- Stability of DC grids
- Optimal power flow
- Power flow controller
- Demand side management
- Data over power line
- Power management
- Markets
- harmonics

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage

DC Nanogrids Radial DC feeders

(lighting)

stability

- DC house nanogrid
 PV charging systems of EVs
- DC ready devices and USB power delivery
- Devices, protection, • Enable demand response

TUDelft

DC Nanogrids V2.0

Bidirectional power flow

• Enable demand response

PV and storage
DC house nanogrid
PV charging systems of EVs

power delivery

- DC Nanogrids
- Radial DC feeders
 (lighting, trailey)
 DC ready devices and USB
- (lighting, trolley)
- Devices, protection,
- stability

ŤUDelft

Trolley Bus Charging

ŤUDelft

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage

DC Nanogrids

- Radial DC feeders
- (lighting)

ŤUDelft

• Devices, protection,

stability

- DC house nanogrid
 PV charging systems of EVs
- DC ready devices and USB
- power delivery
- Enable demand response

ŤUDelft

Integrating a Photovoltaic Panel and a Battery Pack in One repository.tudelft.nl > datastream > OBJ > download

Battery energy Storage System Integration (Distribution Grids)

- Develop techniques for the optimal size, location and control of battery storage systems in distribution network with high penetration of Renewable Energy Sources
- Design of the energy storage power electronics converter and optimization according to the battery functionality

Distribution Network Overloaded by high PV Production

)elft

Set up for the testing and validation of the storage behavior in distribution networks

PhD Topic of Marco Stecca

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery Enable demand
- response

DC Nanogrids

(lighting)

stability

ŤUDelft

Radial DC feeders

• Devices, protection,

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery Enable demand
- response

(lighting) • Devices, protection, stability **ŤU**Delft

DC Nanogrids

Radial DC feeders

TUDelft

DC House Nanogrid

"To Develop Efficient and Intelligent Residential Nanogrids Suitable for Future Smart Grid Integration"

Soumya Bandyopadhyay

TUDelft

Pulse Building TU Delft

ŤUDelft

Current AC System Layout

Functions

Energy efficiency Availability and reliability Co-ordinated control Grid-support capability Scalability

UDelft

Solution: Smart Power Router

ŤUDelft

Energy management

- Demand-side management
- Monitor energy usage
- Grid-voltage support

Power management

- · Bi-directional power flow
- · Control DC bus voltage
- Support advanced power management and islanding modes

Fault management • Current limiting

• Disconnect/re-connect

• LV ride-through

Novel DC House Architecture

(::)

-

(::)

Functions

Energy efficiency Availability and reliability Co-ordinated control Grid-support capability Scalability

TUDelft

Multi-active bridge (MAB) converter

JDelft

• Features:

- 1. Immune to grid outages or faults
- 2. Low footprint on the grid
- 3. Possibility to support the grid
- 4. Decentralized grid ready

MAB Converter Operation

ŤUDelft

Coupled power flows

 \mathbf{I}_{T1}

I'_{T3}-

 $\Gamma_{_{T4}}$

Critical Review of State of the Art

- Power flow complexity increases with number of ports
- High computational requirement for control
- Transformer design is challenging

Number of Ports	Possible Power Flows
2	2
3	12
4	26

Coupling problem in MAB Converter

TUDelft

S BANDYOPADHYAY, P Purgat, Z Qin, P Bauer: A Multi-Active Bridge Converter with Inherently Decoupled Power Flows IEEE Transactions on Power Electronics

Decoupling Solution

ŤUDelft

S.Bandyopadhyay, P. Purgat, Z. Qin and P. Bauer, "A Multi-Active Bridge Converter with Inherently Decoupled Power Flows," in IEEE Transactions on Power Electronics,

Slave port

Experimental prototype

TUDelft

4. Four bi-directional ports

Decoupling performance

Conventional MAB converter dynamics

ŤUDelft

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery Enable demand

response

DC Nanogrids

(lighting)

stability

ŤUDelft

Radial DC feeders

• Devices, protection,

PV for smart cities applications

Solar Powered Electrical Bike and Scooter Charging Station

PV for smart cities applications

Solar Powered Electrical Bike and Scooter Charging Station

System topology

TUDelft

PV Charging of Electric Vehicles

TUDelft

PhD Gautam Ram

PV Charging of Electric Vehicles

ŤUDelft

PhD Gautam Ram
10kW EV-PV power converter

- Higher power density
- Higher efficiency
- Bidirectional EV charging

SiC MOSFET

SiC diode

Powdered alloy inductors

EV-PV power converter

Winners of the EV Award Presented at the IDTechEx Show! Berlin

DC Charging

TUDelft

Smart Building Power / Energy Management

- Developing smart energy management algorithms for future buildings based on PV & load forecasting
- Develop novel bidirectional battery charger

UDelft

 Integrate energy management algorithm and novel battery charger on existing multi-port modular DC/DC converter

PhD Topic of Wiljan Vermeer

Roadmap for DC Systems

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and

response

DC Nanogrids

- Radial DC feeders
- (lighting, Trolley)
- Devices, protection,
- stability

ŤUDelft

USB power deliveryEnable demand

DC READY DEVICES

Laurens Mackay; Laura Ramirez-Elizondo; Pavol Bauer: DC ready devices - Is redimensioning of the rectification components necessary? <u>Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014</u>

Roadmap for DC Systems

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- Devices, protection,

JDelft

- (lighting)
- stability

Roadmap for DC Systems

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- (lighting)

JDelft

- Devices, protection,
- stability

TUDelft

L. Mackay, N. H. van der Blij, L. M. Ramirez-Elizondo and P. Bauer, Toward the Universal DC Distribution System", Electric Power Components and Systems, vol. 45, no. 10, 2017

TUDelft

Sopra and CSGriP

Bipolar Single-Bus

TUDelft

Bipolar Single-Bus

ŤUDelft

PhD Li Ma

70

Hybrid AC-DC

Hybrid AC-DC

TUDelft

Pavol Bauer, Leake E. Weldemariam, Delft University of Technology; Evert Raijen, Exendis, NL; Praveen Kumar, Indian Institute of Technology, ;Connecting Topologies of Stand Alone Micro Hybrid Power Systems.pp. 304-310, PCIM 2011

Roadmap for DC Systems

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

DC microgrids / DC links

- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow

 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders (lighting)
- Devices, protection,

JDelft

stability

Roadmap for DC Systems

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- (lighting)

JDelft

- Devices, protection,
- stability

Protection of Low Voltage DC Systems

System is **safe** for devices and individuals interacting with the grid

The detection methods are **sensitive** to the different types of faults

The protection devices are **secure** and do not trip unnecessarily

The protection scheme is selective and isolates the faulted section

The fault is cleared **fast**, so that blackout and damage is prevented

The protection of the system is cost-effective

Protection of Low Voltage DC Systems

Lack of a zero crossing

Fast interruption is required: low inertia, component design

Selectivity: meshed systems, fast interruption, challenging selectivity

Protection Zones

ŤUDelft

N. H. van der Blij, P. Purgat, T. B. Soeiro, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, Decentralized Plug-and-Play Protection Scheme for Low Voltage DC Grids", Energies 2020

Protection Zones

Short-circuit potential

- **Zone 0:** Medium/high voltage (> 1500V) highest short circuit
- **Zone 1:** Microgrid level (350 1500 V) high short circuit, low inertia
- **Zone 2:** Nanogrid level (42 350 V) low short circuit
- **Zone 3:** Device level (< 42 V)- safe to touch (usb C)

Protection – galvanic isolation

Delft

Protection Tiers

Provided protection:

- **Tier A:** No guaranteed protection
- **Tier B:** Device protection internal protection
- **Tier C:** Overcurrent protection interrupted when specified current
- **Tier D:** Current prevention protection

Low Voltage DC Faults

Current limiting inductances and fast fault interruption are required to prevent the system from reaching its large steady-state currents

TUDelft

Low Voltage DC Faults

Current limiting inductances and fast fault interruption are required to prevent the system from reaching its large steady-state currents

Protection Devices

Туре	Speed	Reliability	TCO
Hybrid CB	-	-	-
Solid-state CB	+	+	+

TUDelft

SSCB Detection Methods

ŤUDelft

Rate-of-change-of-current Detection

SSCB Design Constraints

[20A/div]

V_ds,1 [200V/div]

de

SSCB Prototype 3

Parameter	Acronym U _{nom}	Value 350 [V]
Nominal voltage		
Nominal current	Inom	16 [A]
On-state resistance per pole	R_{CB}	130 [mΩ]
Current limiting inductance	L_{CB}	1.0 [μH]
Fault clearing time	$t_{\rm CB}$	1.0 [µs]

TUDelft

Selectivity in LVDC Systems

Major challenges for selectivity in low voltage DC systems:

- **Fast fault interruption**
- Radial and meshed structures
- Changing grid topology

The fast propagation of the fault throughout the system and the commutation of inductive currents encumbers selectivity.

Fast Fault propagation

Delft

This situation occurs in, for example, an islanded household nanogrid.

In such a system the fault propagates quickly and the set thresholds (in this case the di/dt thresholds) are exceeded in all groups, before the SSCB in the faulted group can react.
Commutation of Inductive Currents

This situation occurs, for example, a connected household nanogrid.

Delft

In such a system the inductive (pre-fault) current from the faulted section will flow in the non-faulted sections of the grid after fault clearing. This can cause the unnecessary tripping of non-faulted groups.

Plug and Play Protection Scheme

Fast fault propagation is solved by modifying the topology of the SSCB, such that it forms an LCR filter that delays propagation.

Commutation of inductive currents is ignored by employing a well-designed time-current characteristic.

Plug and Play Experimental Results

ŤUDelft

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- Devices, protection,

- (lighting)
- stability

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- (lighting)
- Devices, protection, stability

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, Stability and Decentralized Control of Plug-and-Play DC Distribution Grids", IEEE Access, vol. 6, 2018

150

Stability of DC Grids

Challenges for the stability of DC grids:

- Low inertia
- Constant power loads
- Changing topology

Two modes of instability in DC grids:

- Voltage instability (blackout)
- Oscillatory stability

UDelft

Voltage instability (blackout)

Plug-and-Play Stability Criteria

Lyapunov stability guidelines from a Brayton-Moser representation of the system:

$$P_{\Sigma} \leq \frac{U_0^2}{4(Z_s + R_{\Sigma})}$$

$$P_{\Sigma} \leq \frac{U_{\min}(U_0 - U_{\min})}{Z_s + R_{\Sigma}}$$

$$P_{\Sigma} \leq \frac{U_{\min}^2}{Z_s + R_{\Sigma}}$$

$$P_l \leq C_l U_{\min}^2 \min\left(\frac{R_j}{L_j}, \frac{1}{C_s Z_s}\right)$$

Plug-and-play stability can be achieved by:

- The output capacitance of constant power loads needs to be designed appropriately
- Control needs to ensure that demand and supply response

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- Devices, protection,

- (lighting)
- stability

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow

 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- (lighting)

- stability
- Devices, protection,

Power Flow

Current in each line, and each node:

$$I_L = R^{-1} \Gamma U_N$$
$$I_N = \Gamma^T I_L = \Gamma^T R^{-1} \Gamma U_N = Y U_N$$

Consequently, the system is quadratic:

$$P_{N} = \langle U_{N}, YU_{N} \rangle$$

Direct Matrix Approximation:

- One node is either a slack node, or referenced to a specified voltage
- Iterations are made between determining the converter currents and calculating the node voltages

$$\check{U}_{N}^{k+1} = \check{Y}^{-1} \left(\begin{bmatrix} \frac{P_{1}}{U_{1}^{k}} \\ \vdots \\ \frac{P_{n}}{U_{n}^{k}} \end{bmatrix} - I_{0} \right)$$

N. H. van der Blij, L. M. Ramirez-Elizondo, M. T. J. Spaan and P. Bauer, A State-Space Approach to Modelling DC Distribution Systems", IEEE Transactions on Power Systems, vol. 33, no. 1, Jan. 2018.

Dynamic Modelling

t [ms]	U_d [V]	$Z_d \ [\Omega]$	P_2^* [W]	P_3^* [W]
-5	350	1	0	0
0	350	1	2100	0
23	350	1	2100	2100

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- Devices, protection,

- (lighting)
- stability

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow

 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- (lighting) • Devices, protection,
- stability

ŤUDelft

P. Purgat, N. H. van der Blij, Z. Qin and P. Bauer, "Partially Rated Power Flow Control Converter Modeling for Low Voltage DC Grids", IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019

Power Flow in Meshed LVDC

Power Flow in Meshed LVDC

Power Flow Control Converter

ŤUDelft

Power Flow Control Converter

Switching Frequency

HV Voltage Rating

< 100 kHz < 800 V

Si & SiC MOSFETs

Power Flow Control Converter

ŤUDelft

Testing – Short Circuit

ŤUDelft

THE PFCC FOR BIPOLAR LVDC DISTRIBUTION

ŤUDelft

control board

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders
- Devices, protection,

- (lighting)
- stability

DC Nanogrids V2.0

• DC house nanogrid

PV charging systems of

• DC ready devices and

USB power delivery

• Enable demand

response

• PV and storage

EVs

- DC microgrids / DC links
- Towards local generation
- local use (storage, EVs)
- Cellular concept
- Sizing (optimization)
- Protection, grounding Bidirectional power flow
 - Stability of DC grids
 - Optimal power flow
 - Power flow controller
 - Demand side management
 - Data over power line
 - Power management
 - Markets
 - Harmonics

DC Nanogrids

- Radial DC feeders

- stability
- (lighting)

- Devices, protection,

Integration of Power Electronics

- Studying integration problems in systems with high population of power electronics
- Ensuring the stable joint operation of multiple power electronic converters
- Developing and testing control measures for smartly compensating distortions in AC and DC grids

Lucia Beloqui Larumbe

ŤUDelft

Radial DC grids

- Connecting DC microgrids
- Refurbishing the system for (partially) DC infra
- Modular converters with integrated protection
- Integrated control market approach
- Integrating cells/microgrids
- Interface, interact, integrate

- DC Nanogrids
- Radial DC feeders
 (lighting)

 Devices, protection, stability

Delft

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery
- Enable demand

response

- local use (storage, EVs) • Cellular concept
 - Sizing (optimization)
 - Protection, grounding

DC microgrids / DC links

Towards local generation

- Stability of DC grids
- f Optimal power flow
 - Demand side management
- Data over power line
- Power management
- Markets
 - Harmonics

Radial DC grids

- Connecting DC microgrids
- Refurbishing the system for (partially) DC infra
- · Modular converters with integrated protection
- Integrated control market approach
- Integrating cells/microgrids
- Interface, interact, integrate

- DC Nanogrids
- Radial DC feeders lighting)

Devices, protection, stability

Delft

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery
- Enable demand

response

 Towards local generation local use (storage, EVs) Cellular concept

DC microgrids / DC links

- Sizing (optimization)
- Protection, grounding
- Stability of DC grids
- Optimal power flow
 - Demand side management
 - Data over power line
 - Power management
- Markets
 - Harmonics

Refurbished AC to DC Links

PhD Topic of Aditya Shekhar

 existing ac link conductors can be refurbished to operate under dc by bringing two converters at each end

Parallel AC-DC Reconfigurable Links

• In most cases, the bulk power transfer link depicted in figure consists of multiple conductors for double, triple or more three phase links.

)elft

 parallel ac-dc operation can offer the same power capacity using reconfiguration techniques. The active power can be steered using the dc link converters to run the system at maximal efficiency for any load demand.

In-City Compact Power Redirection

 power can be redirected compactly within the same geographical area from local areas of excess generation to those with higher demand.

ŤUDelft

Zonal Interconnection

ŤUDelft

• Zonal interconnection for efficient power transfer between different geographical locations can be advantageous in achieving lower distribution losses
Capacity Enhancement

CASE-STUDY: ALLIANDER'S MV DISTRIBUTION SYSTEM

ŤUDelft

1pp.lyethylege(n(XL)RE))Broge689As abueraiolinerol several at the A, B and C

ALLIANDER'S SYSTEM

ALLIANDER'S SYSTEM

PROPOSED TOPOLOGY 1

- During normal operation proposed topology has a capacity of 40 MVA as against 30 MVA for the original system
- refurbished 6 conductors of 3-core cables A and B to operate as dc links .

Roadmap for DC Systems

Radial DC grids

- Connecting DC microgrids
- Refurbishing the system for (partially) DC infra
- Modular converters with integrated protection
- Integrated control market approach
- Integrating cells/microgrids
- Interface, interact, integrate

DC Nanogrids

Radial DC feeders (lighting)

 Devices, protection, stability

DC Nanogrids V2.0

- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of EVs
- DC ready devices and
- USB power delivery
- Enable demand

response

- Iocal use (storage, EVs) • Cellular concept
 - Sizing (optimization)
 - Protection, grounding

DC microgrids / DC links

Towards local generation

- Stability of DC grids
- of Optimal power flow
 - Demand side management
 - Data over power line
 - Power management
- Markets
- Enabling Blokchain

TUDelft

PhD Pavel Purgat

Low Voltage DC System Designer' View

MVDC/LVDC Connection LVDC/LVDC Connection

LVDC Electric Vehicle Charging

TUDelft

DC- DC Converter – Electronic transformer Edison's missing link

Class C

DAB module

TUDelft

Series -parallel

TUDelft

TRIPLE ACTIVE BRIDGE

Roadmap for DC Systems

Radial DC grids

- Connecting DC microgrids
- Refurbishing the system for (partially) DC infra
- Modular converters with integrated protection
- Integrated control market approach
- Integrating cells/microgrids
- Interface, interact, integrate

Meshed DC distribution grids

- Sustainable, reliable, high efficient, low cost DC distribution grid with renewable energy, and electric vehicles
- Fexibility and modularity
- Decentralized control
- New distribution of costs, market and usage structures
- Integration of multiple energy carriers (gas&elec.)

DC Nanogrids

- Radial DC feeders
- (lighting)

Delft

- Devices, protection,
- stability

local use (storage, EVs)

- DC Nanogrids V2.0
- Bidirectional power flow
- PV and storage
- DC house nanogrid
- PV charging systems of FVs
- DC ready devices and
- USB power delivery • Enable demand

response

- /2.0
 Gellular concept
 Sizing (optimization)
 - Protection, grounding
 - Stability of DC grids
 - Optimal power flow
 - Demand side management

DC microgrids / DC links

Towards local generation

- Data over nower line
- Data over power line
- Power management
- Market
 - Harmonics

